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SUMMARY

Recently, the kinetic schemes, namely the kinetic �ux-vector split (KFVS) scheme and kinetic wave=
particle split (KWPS) scheme, for Euler �ows have gained wide recognition for their e�ciency and
robustness. However, to date, all computations performed with these schemes have employed a time-
explicit formulation. The explicit kinetic schemes severely restrict the time-step allowed for stability. In
this paper, an implicit formulation is derived for both the KFVS and KWPS schemes, and is applied to
compute the shock tube and shock structure problems in one-dimension, and oblique shock re�ection
from a �at plate and supersonic �ow past a blunt-body in two dimensions. Results are compared with
analytical results where available and solutions from explicit formulations. It is shown that implicit
formulations retain the e�ciency and robustness of their explicit counterparts without the restrictive
time step constraints. This results in an increase in computational speed for steady state computations.
To the authors’ knowledge, this is the �rst time that the implicit kinetic schemes have been formulated.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, there has been considerable interest in the kinetic schemes for solving the
Euler and Navier–Stokes equations. However, to date, all the papers on kinetic schemes
reported in the literature employ an explicit formulation due to its simplicity. The major
drawback of the explicit formulation is the restriction placed on the time-step allowed for the
stability of the scheme.
Kinetic schemes are based on the fact that the set of equations governing the motion of

�uid �ows at the continuum level, i.e. Euler, Navier–Stokes, and Burnett equations, can be
obtained by taking the moments of the Boltzmann equation at the molecular level with respect
to the collision invariants. This is often referred to as the ‘moment method strategy’. For
gas in the state of collisional equilibrium, the collision integral vanishes, and the Boltzmann
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equation adopts a form similar to that of the linear wave equation. Its solution is simply
the Maxwellian probability density distribution function. When moments of this equation are
taken with the collision invariants, the Euler equations are obtained.
One of the well-known and extensively used kinetic schemes, the kinetic �ux-vector splitting

(KFVS) scheme proposed by Deshpande [1], splits the �ux term in the Boltzmann equation
into positive and negative parts based on the sign of the molecular velocity. Taking the
moments of this split �ux with respect to the collision invariant vector results in the KFVS
algorithm. This scheme, however, requires the evaluation of the computationally expensive
error functions.
Recently, Agarwal and Acheson [2] have proposed a new �ux splitting at Boltzmann level,

which they call kinetic wave=particle splitting (KWPS). They have shown that this new split-
ting does not lead to the evaluation of error functions, which results in increased computational
speed and also simpli�es the algebra considerably. By recognizing that the molecular velocity
of an individual gas particle can be expressed as the sum of the average �uid velocity of the
gas and each particle’s thermal (peculiar) velocity, the Boltzmann �ux can be split into two
components: the convective part and the acoustic part. These two parts of the Boltzmann �ux
are then upwind discretized and the moments of this discretized equation with the collision
invariants then result in the KWPS scheme for the Euler equations.
The schemes mentioned above have been investigated using explicit formulations. This

necessitates limiting the time step for the sake of stability. Implicit �ow solvers do not
su�er from this drawback, allowing larger time-step, and thereby signi�cantly reducing the
computation time for a wide range of �ow problems. Therefore, it is desirable to derive
implicit formulations for the kinetic schemes, for both the KFVS and the KWPS schemes.
In this paper, for the �rst time, implicit formulations of two kinetic schemes, namely the

KFVS scheme and the KWPS scheme, are systematically derived. For simplicity, in this paper
the derivations are presented in one-dimension only. Extensions of the algorithms to 2-D and
3-D Euler equations are straightforward. The implicit KFVS and KWPS algorithms are then
numerically tested for accuracy and robustness. The test cases include the 1-D shock tube,
1-D shock structure, the 2-D oblique shock re�ection from a �at plate, and 2-D supersonic
�ow past a blunt-body.

2. DERIVATIONS OF THE SCHEMES

This section describes the systematic derivation of implicit formulations of two kinetic sche-
mes, i.e. KFVS scheme and the KWPS scheme, for the Euler equations. For simplicity, the
derivation is given in one-dimension only. Extensions to 2-D and 3-D are straightforward. The
implicit KFVS and KWPS algorithms are then numerically tested for accuracy. Two di�erent
approaches are employed in the derivations.
In the macroscopic approach, the Jacobian matrices are simply obtained from the split �ux-

vectors at the continuum level. In the microscopic approach, an implicit algorithm is �rst
devised for solving the Boltzmann equation. The moment method strategy is then employed
to obtain the Jacobian matrices. It will be shown that in the case of KFVS scheme, either
approach gives identical results. However, this is not the case for the KWPS scheme. This
arises from the fact that the split-�ux vectors are not continuously di�erentiable with respect
to the state variables.
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2.1. Kinetic schemes

The Boltzmann equation, which governs the molecular motion, can be written as follows:

@f
@t
+ vi

@f
@xi
= J (f;f) (1)

For gas in collisional equilibrium, the right hand side vanishes, and the solution is simply a
Maxwellian distribution function:

f(0) =�
1
�o
exp

(
− �
�o

)(
�
�

)3=2
exp(−�(vk − uk)(vk − uk)) (2)

where the average internal energy is expressed as �o=(1=(�− 1)− 3
2 )

1
2� .

De�ne the moment method strategy as the following operation:

〈�; f〉≡
∫
�+
d�

∫
�3
d3vi(�f) (3)

When this operation is applied to Equation (1) with the Maxwellian distribution function (2),
the Euler equations are obtained.
For simplicity, the following derivation is given in one dimension only, which implies that

2 of the velocity components, namely uy and uz vanish. In this situation, the Maxwellian
distribution function simpli�es to

f(0) =�
1
�o
exp

(
− �
�o

)(
�
�

)1=2
exp(−�(vx − ux)2) (4)

where the average internal energy is expressed as �o=(1=(� − 1) − 1
2 )

1
2� . Furthermore, the

moment method strategy operation (3) is simpli�ed to

〈�; f〉≡
∫
�+
d�

∫
�
dvx(�f) (5)

where the collision invariant vector now becomes �=[1 vx �+ 1
2v
2
x]
T.

Operation (5) results in 1-D Euler equations which can be expressed as

@Q
@t
+
@F
@x
= 0 (6)

where

Q=



�

�ux

�et


 and F=




�ux

�u2x + p

�uxet + pux




Note that in all derivations the equation of state for ideal gas (p=�RT ) is assumed to hold.
The KFVS scheme is derived by �rst splitting the �ux vector in the Boltzmann

equation (1) into positive and negative molecular velocity spaces and then taking the
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moments. The resulting �ux vector in the Euler equations is now split into two parts, one
corresponding to the positive space, and the other corresponding to the negative space:

@Q
@t
+
@F+

@x
+
@F−

@x
= 0 (7)

The resulting split �ux-vectors for the KFVS scheme can be expressed as

F±=
1± erf (Sx)

2




�ux

�u2x + p

�uxet + pux


± exp(−S2x )

2
√
��




�

�ux

�et + 1
2p


 (8)

where Sx= ux
√
� and erf (s)= 2√

�

∫ s
0 dt exp(−t2).

On the other hand, in deriving the KWPS scheme, the molecular velocity (vi) is �rst
decomposed into �uid velocity (ui) and thermal velocity (ci) as vi= ui+ci [3]. Both the �uid
and thermal velocity are split into positive and negative spaces, and then the moments are
taken. Then, the resulting �ux-vectors in the Euler equations can be expressed as

F±=
ux ± |ux|
2



�

�ux

�et


+ 12



0

p

pux


± 1

2
√
��




�

�ux

�et + 1
2p


 (9)

2.2. Explicit formulation

The Equation (7) is generally solved using a time marching scheme, in which the solution is
updated at each time level using the �ux terms. In the explicit formulation, these �ux terms
are evaluated at current time level as follows:

�Qj=Qn+1
j −Qn

j = − �t
�x
(F+j − F+j−1 + F−

j+1 − F−
j )

n (10)

This explicit formulation for the kinetic schemes has been successfully applied to compute
the Euler �ows for over a decade by many researchers.

2.3. Implicit formulation

In the implicit formulation, the �ux terms at the next time level are employed in the updating
process. Thus:

�Qj= − �t
�x
(F+j − F+j−1 + F−

j+1 − F−
j )

n+1 (11)

To evaluate expression (11), a linearization of the �ux vectors with respect to the state variable
vector is employed, which requires the computation of the Jacobian matrices.
There are two approaches to derive the implicit kinetic schemes: �rst is based on obtaining

the Jacobian matrices from the split �ux-vectors at the continuum (C) level; and the second
approach �rst derives the implicit scheme for the Boltzmann equation at the molecular (M)
level and then takes the moments with respect to the collision invariants (�).
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First, the implicit scheme using the macroscopic approach is derived. The split Jacobians
are obtained by linearization of the split �ux vectors at the continuum level. The procedure
here follows the one given in Ho�man and Chiang [4]. The results are as follows:

(F±)n+1≈ (F±)n +�t
@F±

@t
≈ (F±)n +�t

@F±

@Q
@Q
@t

≈ (F±)n +A±�Q (12)

This approach is very straightforward; the resulting 1-D Jacobian matrices are given below.
For brevity, the Jacobian matrix A is given as the following matrix product:

A=BC−1 (13)

where

C=



1 0 0

ux 1 0

q ux 1
�−1




For KFVS scheme:
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For KWPS scheme:
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Note that when ux=0; A0≡ [0].
Using Equation (12), Equation (11) can now be written as the following block tri-diagonal

system of equations:

X�Qj−1 + Y�Qj + Z�Qj+1 =RHS (16)

where

X =−�t
�x
A+j−1

Y = [I] +
�t
�x
(A+j −A−

j )

Z=+
�t
�x

A−
j+1

RHS=−�t
�x
(F+j − F+j−1 + F−

j+1 − F−
j )

n

The alternate approach to deriving the implicit kinetic scheme for the Euler equations is to
�rst construct the implicit scheme for the Boltzmann equation (1), and then take the moments.
In this case, one needs to express the change in the Maxwellian distribution (df(0)) in terms
of the change in the state variable (dQ), expressed as

df(0) = amd(�) + axd(�ux) + aEd(�et) (17)

where

am =f(0)
(
1 + �
�

− 2�
�
cxux − �− 1

�
2��q

)

ax =f(0)
(
2�
�
cx +

�− 1
�

2��ux

)
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aE =f(0)
(
−�− 1

�
2��

)

�=
3
2
− �
�o

− �c2x

Note that the resulting system after taking the moments again has the same form as equation
(16).
In the case of KFVS scheme, this results in an identical expression for the Jacobian matrices.

On the other hand, for the KWPS scheme, the following expressions are obtained:

A±=
ux ± |ux|
2
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2
√
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To the best of the authors’ knowledge, the implicit kinetic schemes as expressed above
have never been formulated in the literature before.

3. NUMERICAL VALIDATION OF THE SCHEMES: 1- AND 2-D TEST CASES

To investigate the new implicit algorithms, a series of numerical tests is conducted. The �rst
test is to compare the accuracy of the implicit schemes in a time accurate fashion with the
explicit schemes. For this purpose, the 1-D shock tube test case is employed, with density
and pressure ratios of �L=�R =8 and pL=pR =10, respectively. A grid with L=2000 points is
employed. This high level of resolution is chosen to allow the implicit schemes enough time
to evolve. The time step is �t=0:4 for the explicit schemes, which roughly corresponds to
CFL≈ 0:877, and �t=8:0 for the implicit schemes. Final solution is obtained at t=400.
Since the main advantage of implicit schemes over explicit schemes is in the computation

of steady state solutions, another test case with a steady state solution is computed. For
this purpose, a Mach 1.5 steady shock within a channel is computed. The domain consists
of L=100 grid points. For Euler �ows, an analytical solution exists, and can be found in
standard textbooks on compressible �uid �ow, e.g. the book by Anderson [5]. To start the
�ow at t=0, linear variations in density, velocity, and pressure spanning the domain are
created, and the boundary conditions are then set to the analytical values. For the purpose
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of comparison, the L2-norm of density change is computed at every time step. For explicit
schemes, a time step of �t=0:3, which roughly corresponds to CFL≈ 0:89 is employed. A
time step of �t=3:0 is used for the implicit schemes. The solution is assumed to converge
when L2-norm¡10−5.
In 2-D, �rst a simple test case of an oblique shock re�ecting from a �at plate is considered.

The computational domain is of 4× 1 units, which is discretized into 321× 101 points. An
oblique shock wave enters from the top left corner at an angle of 29◦ and is re�ected by
the �at plate. The far�eld �ow is a steady Mach 2.9 �ow from left to right. For the explicit
schemes, CFL=0:4 is employed, while CFL=40:0 is used for the implicit schemes. The
solution is assumed to converge when the L2-norm of changes in density is less than 10−7.
Finally, the supersonic �ow past a 2-D blunt-body is computed. The leading edge is semi-

circular with a radius R=0:1 m, and the afterbody extends to 2R behind the leading edge.
The grid consists of 78× 51 points. The in�ow conditions are set to that of a uniform �ow of
Mach 5.85 with far�eld density and pressure values of T∞=55K and p∞=510Pa. The CFL
values used are 0.4 for the explicit schemes and 2.0 for the implicit schemes. The solution
is assumed to converge when the L2-norm of changes in density is less than 10−7. Only the
KWPS schemes are used to compute this test case.
In computations using the implicit schemes, the block tridiagonal system is solved using the

routines provided in Tannehill et al. [6]. Also, the routine for the error functions calculations
needed in KFVS formulations is taken from Press et al. [7], which is based on Chebyshev
�tting.

4. NUMERICAL RESULTS AND DISCUSSION

For the shock tube test case, analytical solutions are employed for comparison with the
numerical results. From the solutions obtained with the implicit schemes, shown in Figures
1 and 2, and those obtained with the explicit schemes, shown in Figures 3 and 4, it is clear
that the implicit schemes are able to produce very accurate results at a signi�cantly larger
time step compared to the explicit schemes, despite not being able to capture some of the
transient details at the initial time steps as expected.
To better demonstrate the advantage of the implicit schemes, results from the steady state

shock structure computations are presented. The results from the implicit schemes, Figures 5
and 6, show no noticable di�erence with their explicit counterparts, Figures 7 and 8. However,
the implicit schemes show signi�cantly more rapid convergence rates compared to explicit
schemes, as shown in Figure 9 and Table I.
Density contours for the 2-D oblique shock re�ection from a �at plate obtained using the

implicit schemes are presented in Figures 10 and 11. These results are essentially identical to
those obtained using the explicit schemes. However, the convergence history data, shown in
Figures 12–14 and Table II, show faster convergence rates for the implicit schemes.
For supersonic �ow past a 2-D blunt-body, the density contour plots are presented in

Figure 15 for the explicit and the implicit KWPS scheme. The stagnation line pro�les for
the density, thermal pressure, and temperature are given in Figures 16 and 17 for the explicit
and implicit KWPS scheme respectively. It is clear that both the implicit and explicit scheme
produce indistinguishable results. The convergence histories for the explicit and implicit KWPS
schemes are given in Figure 18. The computation time is presented in Table III. It is clear
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Figure 1. Implicit KFVS calculations for the 1-D shock tube test case: comparison
of analytical solutions and computational results.
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Figure 2. Implicit KWPS calculations for the 1-D shock tube test case: comparison
of analytical solutions and computational results.

that although the implicit scheme requires less number of time steps to achieve the steady-
state solution, it still takes more CPU time to converge to the �nal solution. However, with
increasing number of grid points, it is expected that the implicit scheme will become a more
attractive alternative.
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Figure 3. Explicit KFVS calculations for the 1-D shock tube test case: comparison
of analytical solutions and computational results.
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Figure 4. Explicit KWPS calculations for the 1-D shock tube test case: comparison
of analytical solutions and computational results.

Comparing the two kinetic schemes, kinetic �ux-vector split and kinetic wave=particle split,
it is clear that KFVS tends to be more accurate than the more di�usive KWPS on the same
grid. This, however, comes at a price of calculating the numerically expensive error functions
in the KFVS scheme.
From comparison of results from the two variants of implicit KWPS scheme, (C) and (M),

it is found that the molecular (M) approach is preferable to the continuum (C) approach.
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Figure 5. Density & pressure pro�les obtained with the implicit schemes for
the 1-D shock structure computations.
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Figure 6. Velocity and Mach number pro�les obtained with the implicit schemes
for the 1-D shock structure computations.

A closer look at the eigenvalue analysis shows that the Jacobians derived using the continuum
approach can have complex eigenvalues, while this is not the case for the Jacobians obtained
by the molecular approach [8].
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Figure 7. Density and pressure pro�les obtained with the explicit schemes for
the 1-D shock structure computations.
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Figure 8. Velocity and Mach number pro�les obtained with the explicit schemes
for the 1-D shock structure computations.
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Figure 9. Convergence history for the 1-D shock structure computations.

Table I. Computation time for 1-D shock structure test case.

Numerical scheme No. of iterations Comp. time (s)

Explicit KFVS 1646 7.94
Explicit KWPS 1286 2.60
Implicit KFVS 211 4.36
Implicit KWPS 166 2.97

0 1 2 3 4
0

0.2

0.4
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0.8

1

Figure 10. Implicit KFVS calculations of the density contours for 2-D oblique
shock re�ection from a �at plate.
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Figure 11. Implicit KWPS calculations of the density contours for 2-D oblique
shock re�ection from a �at plate.
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Table II. Computation time for 2-D oblique shock re�ection test case.

Numerical scheme No. of iterations Comp. time (s)

Explicit KFVS 2585 2:44:50.53
Explicit KWPS 2828 1:32:37.60
Implicit KFVS 201 1:28:06.43
Implicit KWPS 315 2:07:43.57

0 1 2 3 4

1

2

3
Exact
Implicit KFVS
Implicit KWPS

Figure 12. Density pro�les along the mid-plane (y=0:5) for 2-D oblique shock
re�ection from a �at plate using implicit schemes.
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Implicit KFVS
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Figure 13. Density pro�les along the solid wall for 2-D oblique shock re�ection
from a �at plate using implicit schemes.
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Figure 14. Convergence history for 2-D oblique shock re�ection from a �at plate test case.

Figure 15. Density contours for the blunt-body computation using explicit (L) and implicit (R) KWPS
scheme; M∞=5:85; p∞=510 Pa; T∞=55 K.
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Figure 16. Density, pressure, and temperature pro�les along the stagnation line of the blunt-body using
explicit KWPS scheme; M∞=5:85; p∞=510 Pa; T∞=55 K.
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Figure 17. Density, pressure, and temperature pro�les along the stagnation line of the blunt-body using
implicit KWPS scheme; M∞=5:85; p∞=510 Pa; T∞=55 K.

5. CONCLUSIONS

Implicit formulations for two kinetic algorithms for Euler �ows, namely, the kinetic �ux-
vector split (KFVS) and the kinetic wave=particle split (KWPS) scheme, have been derived
and tested for 1-D and 2-D benchmark test cases. The numerical results indicate an in-
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Figure 18. Convergence history for computation of supersonic �ow past a
blunt-body using the KWPS schemes.

Table III. Computation time for supersonic �ow past a 2-D blunt-body test case.

Numerical scheme No. of iterations Comp. time (s)

Explicit KWPS 1695 14:54.86
Implicit KWPS 388 1:39:46.31

crease in computational e�ciency in obtaining steady state solutions using these new implicit
formulations.

NOMENCLATURE

A Jacobian matrix
ci thermal or peculiar velocity
et mass speci�c total energy (≡ q+ 1

�−1RT )
F �ux vector
f probability density distribution function
f(0) Maxwellian probability density distribution function
I identity matrix
J (f;f) collision integral
KFVS kinetic �ux-vector split
KWPS kinetic wave=particle split
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p pressure
Q �eld vector
q mass speci�c kinetic energy (≡ 1

2ukuk)
Si velocity ratio (≡ ui

√
�)

ui �uid velocity
vi molecular velocity
� equivalent temperature (≡ 1=2RT )
� ratio of speci�c heats
� internal energy
�o average internal energy (≡ (1=(�− 1)− 3

2 )
1
2� )

� collision invariant vector (≡ [1 vj �+ 1
2vkvk]

T)
� density
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